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ABSTRACT

The manifold hypothesis says that natural high-dimensional data lie on or around
a low-dimensional manifold. The recent success of statistical and learning-based
methods in very high dimensions empirically supports this hypothesis, suggesting
that typical worst-case analysis does not provide practical guarantees. A natural
step for analysis is thus to assume the manifold hypothesis and derive bounds that
are independent of any ambient dimensions that the data may be embedded in.
Theoretical implications in this direction have recently been explored in terms of
generalization of ReLU networks and convergence of Langevin methods. In this
work, we consider optimal uniform approximations with functions of finite statis-
tical complexity. While upper bounds on uniform approximation exist in the liter-
ature in terms of ReLU network approximation, we consider the opposite: lower
bounds to quantify the fundamental difficulty of approximation on manifolds. In
particular, we demonstrate that the statistical complexity required to approximate
a class of bounded Sobolev functions on a compact manifold is bounded from be-
low, and moreover that this bound is dependent only on the intrinsic properties of
the manifold, such as curvature, volume, and injectivity radius.

1 INTRODUCTION

Data is ever growing, especially in the current era of machine learning. However, dimensionality is
not always beneficial, and having too many features can confound simpler underlying truths. This
is sometimes referred to as the curse of dimensionality (Altman & Krzywinski, 2018). A classi-
cal example is manifold learning, which is known to scale exponentially in the intrinsic dimension
(Narayanan & Niyogi, [2009). In the current paradigm of increasing dimensionality, standard sta-
tistical tools and machine learning models continue to work, despite the high ambient dimensions
arising in cases such as computational imaging (Wainwright, 2019). One possible assumption to
elucidate this phenomenon comes from the manifold hypothesis, also known as concentration of
measure or the blessing of dimensionality (Bengio et al.,2013). This states that real datasets are ac-
tually concentrated on or near low-dimensional manifolds, independently of the ambient dimension
that the data is embedded in.

In this work, we explore the consequences of the manifold hypothesis through the lens of approxima-
tion theory and statistical complexity. For a class of functions with infinite statistical complexity, we
consider a nonlinear width in terms of how well it can be approximated in LP with function classes
of finite statistical complexity. We consider how difficult it is to optimally approximate classes of
functions with functions of finite statistical complexity in terms of L? distance. In particular, Theo-
rem demonstrates that on a Riemannian manifold, the optimal error incurred by approximating
a bounded Sobolev class using function classes of finite pseudo-dimension can be lower bounded
using only the implicit properties of the manifold.

1.1 RELATED WORKS

We review some literature surrounding the manifold hypothesis, including theoretical results derived
from the manifold hypothesis, and lower bounds on statistical complexity required to approximate
a function class. We note that the manifold hypothesis is sometimes replaced with the “union of
manifolds” hypothesis, where the component manifolds are allowed to have different intrinsic di-
mension (Vidal, 2011; Brown et al.; 2022). For estimating the intrinsic dimension, we refer to (Pope
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et al.| 20215 Block et al., 2021} [Levina & Bickel, [2004; Fefferman et al.l 2016)); for representing the
manifold or dimension reduction, we refer to (Lee et al., 2007; |Kingma & Welling} |2013}; |(Connor,
et al., [2021} Tishby & Zaslavskyl 2015; |Shwartz-Ziv & Tishbyl 2017).

Bubeck & Sellke] (2021)) shows that for a class of Lipschitz functions interpolating a noisy set of
samples, if the empirical risk is below the noise level, then the Lipschitz constant of f scales as
\/nD/p, where n is the number of samples, D is the ambient dimension, and p is the number
of parameters. |(Gao et al.| (2019) shows that any class of functions that can robustly interpolate
n samples has VC dimension at least 2(nD), and demonstrates a strict computational increase
required for robust learning. |Bolcskei et al.| (2019) show lower bounds for the connectivity and
memory requirements of a deep neural network for approximating function classes in L?(R?).

Chen et al.| (2019) provide approximation rates of ReLU networks for Holder functions on mani-
folds based on the width, depth, and total parameters, albeit still depending linearly on the ambient
dimension of the model, assuming isometric embedding in Euclidean space. They provide approxi-
mations based on partitions of unity and classical constructions on near-Euclidean charts. The same
authors provide associated empirical risk estimates and generalization bounds for ReL.U networks
in (Chen et al.| 2022). Labate & Shil (2023)) consider uniform generalization of the class of ReLU
networks for Holder functions on the manifold, using the Johnson—Lindenstrauss lemma to work in
near-isometry to Euclidean space.

On the unit hypercube, [Yang et al.| (2024)) addresses the complexity of approximating a Sobolev
function constructively with ReLU DNNs by showing an upper bound on the Vapnik-Chervonenkis
(VC) dimension and pseudo-dimension of derivatives of neural networks based on the number of
layers, input dimension, and maximum width. |Park et al.|(2020); Kim et al.|(2023);|[Hanin & Sellke
(2017) consider lower bounds for the minimum width required for ReLU and ReLU-like networks
to e-approximate LP functions on Euclidean space and the unit hypercube. We generalize this line
of work by deriving lower bounds on the statistical complexity in terms of the nonlinear width,
c.f. Definition required to approximate Sobolev functions on compact Riemannian manifolds.
Sobolev functions define a sufficiently expressive class of functions that can model many physical
problems, while also having sufficient regularity properties allowing for functional analysis. This
work thus considers the difficulty of modelling physical problems over structured datasets with
simple function classes.

In Section [2| we formally introduce the concepts of pseudo-dimension and desired notion of the
width of a function class, followed by some existing results relating complexity to generalization
behavior. We also briefly discuss Riemannian manifolds and prerequisite knowledge needed for the
main results. The main result is Theorem [3.1] with proof given in Section 3]

2 BACKGROUND

2.1 PSEUDO-DIMENSION AS COMPLEXITY

We consider a concept of statistical complexity called the pseudo-dimension (Pollard, 2012} |An-
thony & Bartlett,|1999). This extends the classical concept of Vapnik-Chervonenkis (VC) dimension
from indicator-valued to real-valued functions.

Definition 2.1. Let H be a class of real-valued functions with domain X. Let X,, = {21, ....,xp} C
X, and consider a collection of real numbers s1, ..., s, C R"™. When evaluated at each x;, a function
h € H will lie on one sid{] of the corresponding x;, i.e. sign(h(x;) — s;) = +1. The vector of such
sides (sign(h(x;) — s;))"_, is thus an element of {£1}".

We say that H P-shatters X, if there exist real numbers s1, ..., Sy, such that all possible sign combi-
nations are obtained, i.e.,

{(sign(h(x;) — s:)); | h € H} = {£1}".
The pseudo-dimension dim,,(#) is the cardinality of the largest set that is P-shattered:

dim,(H) =sup{n € N| Hx1,...,x,} C X that is P-shattered by H} . (1)

"We adopt the notation of sign(0) = 41 for well-definedness, but the other option is equally valid.
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Figure 1: For the class of affine 1D functions {x — az + b | a,b € R}, this choice of {x1, 22} C R
and s1,s2 € R on the left is P-shattered. We exhibit affine functions fi_ that take all possible
combinations of being above/below s; at the x;. However, there is no possible arrangement of three
points that is P-shattered by affine functions. For example, the arrangement on the right would not
have a function that goes below the left and right points but above the middle point. Therefore, the
pseudo-dimension of the class of affine 1D functions is 2.

‘We note that the classical definition of the VC dimension takes a similar form, but without the biases
s; and with H being a class of binary functions taking values in {£1}. The pseudo-dimension
satisfies similar properties as the VC dimension, such as coinciding with the standard notion of
dimension for vector spaces of functions.

Proposition 2.2 (Anthony & Bartlett||1999, Thm. 11.4). If H' is an R-vector space of real-valued
Sunctions, then dimp(H') = dim(H') as a vector space. In particular, if H is a subset of a vector
space H' of real-valued functions, then dimp(H) < dim(#H').

Much like the VC dimension and other statistical complexity quantities such as Rademacher com-
plexity or Gaussian complexity, low complexity leads to better generalization properties of empirical
risk minimizers (Bartlett & Mendelson, |2002). One example is as follows, where a precise definition
of sample complexity can be found in Appendix [A]

Proposition 2.3 (Anthony & Bartlett|[1999, Thm. 19.2). Let H be a class of functions mapping
from a domain X into [0,1] C R, and that H has finite pseudo-dimension. Then the (e, §)-sample
complexity (Definition|A.2)) is bounded by

128 34 16
mr(e,0) < = (2dimp(7-[)log <6> + log (5)) . (2)

To compare the approximation of one function class by another, we consider a nonlinear width
induced by a normed space.

Definition 2.4 (Nonlinear n-width). Let F be a normed space of functions. Given two subsets
Fy, Fy C F, the (asymmetric) Hausdorff distance between the two subsets is the largest distance
between elements of F and their closest element in Fy:

dist(F1, F; F) = sup inf | f1 — fa 7. 3)
heFy f26F2

For a subset F' C F, the nonlinear n-width is given by the optimal (asymmetric) Hausdorff distance
between F and H", infimized over classes H™ in F with dim,,(H") < n:

pu(F, F) = inf dist(F, H"; F) = inf sup ynf |If = hllz. 4)

This width measures the complexity in terms of how closely the entire function class can be approx-
imated with another class of finite pseudo-dimension. This is useful in cases where F' has infinite
pseudo-dimension, and the nonlinear n-width acts as a surrogate measure of complexity, given by
how well F' can be approximated by classes of finite pseudo-dimension. In Section 3} we provide a
lower bound on the nonlinear n-width of a bounded Sobolev class of functions. In terms of neural
network approximation, these lower bounds complement existing approximation results of ReLU
networks, which effectively provide an upper bound on the width by using the class of (bounded
width, layers and parameters) ReLU networks as the finite pseudo-dimension approximating class.
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2.2 RIEMANNIAN GEOMETRY

The manifold hypothesis can be readily expressed in terms of Riemannian geometry. A quick review
with definitions is given in Appendix [B] and we refer to Bishop & Crittenden| (2011)); |Gallot et al.
(2004) for a more detailed exposition.

Throughout, we will assume that our Riemannian manifold is complete, compact, without boundary,
and connected. We note that the connectedness assumption can be dropped by working instead
on each connected component, since the arguments will be intrinsic and do not depend on any
embeddings.

We state the celebrated Bishop—Gromov theorem (Petersen, [2006; Bishop,[1964)). This is an essential
volume-comparison theorem, used to tractably bound the volume of balls as they grow.

Theorem 2.5 (Bishop—Gromov). Let (M, g) be a complete d-dimensional Riemannian manifold
whose Ricci curvature is bounded below by Ric > (d — 1)K, for some K € R. Let Mj‘l( be the
complete d-dimensional simply connected space of constant sectional curvature K, i.e. a d-sphere
of radius 1/ VK, d-dimensional Euclidean space, or scaled hyperbolic space if K > 0, K = 0,
K < 0 respectively. Then for any p € M and px € M-, we have that

0(r) = volas (B, (p)) /volprg (Br(pic)) (5)

is non-increasing on (0, 00). In particular, volp (B, (p)) < volpra (Br(pK))-

We note that in a space of constant sectional curvature M 4 the volume of a ball of radius 7 does not
depend on the center. We thus write vol 4 (B,-) to mean vol me (Br(p ) for any point prr € M¢
without loss of generality. Bishop—Gromov can be specialized in terms of integrals in hyperbolic
space.

Corollary 2.6 (Block et al.|[2020;/Ohta|2014). Let (M, g) be a complete d-dimensional Riemannian
manifold such that Ric > (d — 1)K for some K < 0. For any 0 < r < R, we have

volys (Br(z)) _ [)fs%!
volps (B (x)) — fo’“ gd—1"7

s(u) = sinh(uy/|K]). (6)

We additionally need the following definitions, bounded in Proposition [C.T]and Lemma[C.2]

Definition 2.7 (Packing number). For a metric space (M, d) and radius € > 0, the packing number
N (M) is the maximum number of points x1,...,x, € M such that the open balls B:(x;) are
disjoint. The c-metric entropy M. is the maximum number of points x1,...,T,, € M such that

d(z;,x5) > € fori # j.
Remark 2.8. The following inequality holds:
MQs SNs SME (7)

The first inequality holds since any 2e-separated subset induces disjoint open £-balls. The second
inequality holds since any set of disjoint e-balls has necessarily e-separated centers.

2.3 SOBOLEV FUNCTIONS ON MANIFOLDS

We now define the bounded Sobolev ball on manifolds, which will be the subject of approximation
in the next section. There are different ways to define the Sobolev spaces on manifolds due to the
curvature differing only by constants, and we consider the variant presented in Hebey| (2000).

Definition 2.9 (Hebey| 2000, Sec. 2.2). Let (M, g) be a smooth Riemannian manifold. For integer
k, p > 1, and smoothu : M — R, define by VEu the k’th covariant derivative of u, and \Vku| its
norm, defined in a local chart as

|VFul? = gt g (VFu)y, o (VR gy, (8)

using Einstein’s summation convention where repeated indices are summed. Define the set of ad-
missible test functions (with respect to the volume measure) as

ChP(M) = {u €C®(M)|Vj=0,.. k / |VIu|P dvoly < +oo}, )
M

4
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and for u € C*P(M), the Sobolev W* norm as

k 1/p k _
lee]l e == Z (/ [V ulP dvolM> = Z V7 ullp (10)
Pt =0

The Sobolev space WP (M) is defined as the completion of C¥:P under || - ||y x.»-

It can be shown that Sobolev functions on a compact Riemannian manifold share similar embedding
properties as in Euclidean space. We briefly mention the manifold versions of the embedding theo-
rems and Morrey’s inequality, which embed into L? spaces and Holder spaces respectively. Other
corresponding inclusions such as Rellich—Kondrachov and Sobolev—Poincaré also continue to hold,
and we refer toHebey| (2000); |Aubin| (2012)) for a more detailed treatment of such results.

We adopt the following definition of a bounded Sobolev ball. This is a natural extension of an
LP-ball to Sobolev spaces and provides a compact space of functions to approximate.

Definition 2.10. For constant C > 0, the bounded Sobolev ball W*»(C; M) is given by the set of
all functions with covariant derivatives bounded in LP = LP(M,volys) by C:

WhP(C; M) = {ue WHP(M) | VI < k, ||Viul, < C} (11
We write WEP(C) to mean W*P(C'; M) for ease of notation.

3 MAIN RESULT

This section begins with a statement of the main approximation result, a lower bound on the nonlin-
ear n-width (4)) of bounded Sobolev balls W (1) in L. This is followed by a high-level intuition
behind the proof, then the proof in detail. The supporting lemmas are deferred to Appendix [C]

Theorem 3.1. Ler (M, g) be a d-dimensional compact (separable) Riemannian manifold without
boundary. From compaciness, there exist real constants K, inj(M) such that:

1. The Ricci curvature satisfies Ric > (d — 1)K, where K < 0;
2. The injectivity radius is positive, inj(M) > 0.

For any 1 < p,q < +oo, the nonlinear width of W1 (1) satisfies the lower bound for sufficiently
large n:

pn(WHP(1), LY(M)) > C(d, K, vol(M), p, q)(n + logn) /4. (12)
The constant is independent of any ambient dimension that (M, g) may be embedded in.

Note that this statement does not refer to any ambient dimension or embeddings, and can be defined
on abstract manifolds. This theorem should be contrasted with [Maiorov & Ratsaby| (1999, Thm.
1), which exhibits a similar bound for the bounded Sobolev space on the unit hypercube [0, 1]%, but
with lower bound n~'/?. The additional log n term is necessary due to the curvature of the space.
We also note that it is possible to perform this analysis in the case of positive curvature and derive
better bounds.

There are two major difficulties in converting the proof of Maiorov & Ratsaby| (1999) to the man-
ifold setting, both arising from curvature. Firstly, Maiorov & Ratsaby| (1999)) uses a partition into
hypercubes to construct the desired counterexample. As such hypercube partitions generally do
not pose nice properties on manifolds, this must be loosened to a packing of geodesic balls, which
does not fully cover the manifold and loosens the bound. The second major difference is the lack
of global information, particularly for geodesic balls of the same radius which can have drastically
different volumes at different points, even if small-ball volumes behave asymptotically Euclidean
pointwise. This will introduce additional constants into the final bound. We break the proof down
into the following steps.

3.1 PROOF SKETCH

Step 1. We consider a class of simple functions, defined as sums of cutoff functions with disjoint
supports. The class of simple functions is such that the L*-norm of each component is large
within the class of bounded W1 (1) functions.
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Step 2. An appropriate subset of the simple functions is then taken, that is isometric to the hyper-
cube graph {£1}™. Since we can find an ¢;-well separated subset of the hypercube graph,
there exists an L'-well separated subset of our simple functions.

Step 3. We then show that the L' separation of the constructed set prevents approximation with any
class of insufficiently large pseudo-dimension. This step uses an exponential lower bound
on the metric entropy and a polynomial upper bound from Bishop—Gromov to derive a
contradiction.

Step 4. We conclude that the optimal approximation with function classes with bounded pseudo-
dimension must incur an error, bounded from below as in the theorem statement. We
conclude the proof by combining all the inequalities from the lemmas and Step 3.

3.2 PROOF OF THEOREM[3.1]

In the following, LP spaces will be on (M, g) with respect to the underlying volume measure. Recall
the definition of the bounded class of WP functions:

WhP(C) = {u e WHP(M) | [|ul| L, || Vulr < C}. (13)

Step 1. Defining the base function class. Fix a radius 0 < r < inj(M), which will be chosen
appropriately later. Fix a maximal packing of geodesic r-balls, say with centers py, ...., py,., where

N, = NP>k g} is the packing number. By definition, B,.(p;) are disjoint for i = 1,..., N,.. From

Proposition|C.1] the packing number satisfies the following where D = diam(M):
vol(M) _ pck volyra (Bp) . a4
VO]MId( (BQT) VO]MId( (BT)

For each ball B,.(p;), we can construct a C* function ¢} : M — [0, /4] with support supp(¢;) C
B,.(p;) such that
/ r/4, d(p,pi) <7/2
(p) = 15
¢l(p) {O, d(p7p1) Z r. ( )

This can be done by constructing a cutoff function and finding an appropriate smooth approximation
for separable Riemannian manifolds, using infimal convolutions and C*® partitions of unity (Azagra
et al.,[2007, Cor. 3). In particular, we can choose (;5; to have |V¢);| < 1 pointwise. From , we
have the L' lower bound

195l = (r/4)volas (Br/2(pi)), (16)

Moreover, we have the L? bounds on ¢} and V¢!
165llp < (r/4)volar (Br(p:))'/7, (17)
IV éilly < volas (Br(pi)) /7. (18)

Therefore, for r < 4, we have that ¢, € WP (voly; (B, (p;))'/?). Defining

/
we get a non-negative function ¢; with support in B,.(p;) satisfying:
ol 2 (/) M LBD e W), 20)
Moreover, ¢; = 1/(4volys (B, (p;))'/?) on B, 2(p;). We now consider the function class
1 &
F. = {fa = W 2 a;o; |a; € {£1},i=1, ...,NT} . 21
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Since the sum is over functions of disjoint support, we have that || fo ||, ||V fo||, < 1, and thus each
element of F). also lies in W'?(1). Moreover, every element f, € F,. satisfies the L' lower bound

using (20):

’ gr: volar (B, /2(pi))

) v a S FT' 22)
NP P volps (B, (p;))/» I (

Hfa”l >
4

Step 2. L'-well-separation of F,.. Consider the following lemma, which shows the existence of a
large well-separated subset of /7.

Lemma 3.2 (Lorentz et al.[[1996, Lem. 2.2). There exists a set G C {£1}"™ of cardinality at least
27116 such that for any v # v' € G, the distance ||v — v’ e > m/2. In particular;, any two
elements differ in at least m /4 entries.

In particular, let G C {£1}"" be well separated by the above lemma. Denote by F,.(G) the subset
of F). corresponding to these indices:

F.(G)={f.€F,|acG}. (23)

For the specific choice of separated G C {£1}"" in the above lemma, we claim the following
well-separation of F.(G), proved in Appendix

Claim 1. There exists a constant Cy(r) > 0 such that for any f # f' € F.(G), we have
If = f'llh = Ci(r) > 0. (24)

Moreover, the following constant works:

PN 2 i
=" 0 ] \)\1-1/p
Ci(r) S s z‘en[[}\%] [volM (B-(pi)) } . (25)

This shows L!-well separation of the subset F.(G) C F, C W1P(1), which consist of sums of
disjoint cutoff functions. The key will now be to contrast this with the metric entropy bounds in
Lemma|C.2] by showing that F}.(G) is difficult to approximate with function classes of low pseudo-
dimension.

Step 3a. Construction of well-separated bounded set. Let 7{" be a given set of vol,-measurable
functions with dim,(H") < n. Lete > 0. Denote

§= sup inf ||f — Al +e = dist(F.(G),H", L*(M)) +¢. (26)
FeF.(G)heH™

Define a projection operator P : F,.(G) — H", mapping any f € F,.(G) to any element P f in H"
such that
If = Pflli <0 (27

We introduce a (measurable) clamping operator C for a function f:
Bi = r/(4vola (B, (p:))PN}MP), i=1,..,N,, (28)
—Bi, x € Br(pi) and f(x) < —f;;
f(z), x€B(p)and — B < f(x) < By

(CH(x) = Bs, x € B.(p;) and f(x) > B;; =

0, otherwise.

Note that j3; are the bounds of f, € F. in the balls B,.(p;). Now consider the set of functions
S :=CPF,(G). Suppose f # [’ € F.(G). We show separation in S using triangle inequality:

ICPf—CPf'|lx > |If = f'lli = IIf =CPfllx— If —CPf'|1. (30)

For any a € G, we have that f, < §; in B, (p;), and both f, and CP f,, are zero on M \ | |, B (p;).
We thus have that for any 2 € M and any f, € F,.(G),

fa(z) = CPfo(x)| < |fa(z) — Pfa()]- @31
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This inequality holds for x € B,.(p;) since C clamps P f,(z) towards [—0;, 8;], and holds trivially
on M \ | |; B,(p;). Integrating and using (27), we have that for any f, € F,.(G),

[fa =CPfall < |[fa = Pfalls < 6. (32)
Using (24), and (32), we thus have separation
ICPf = CPfll 2 If = f'lls =20 = Ca(r) — 2. (33)

Step 3b. Minimum distance by contradiction. Suppose for contradiction that § < Cy(r)/4. Then
from (33)), we have

ICPf —CPf'|lL > Ci(r)/2. (34)
In particular, the separation implies that the CP f are distinct for distinct f € F,.(G), thus |S| =
| G| > 9N /16

Define o = Cy(r)/2. Consider the metric entropy in L', as given in Lemman By construction
. S itself is an a-separated subset in L! as any two elements are L!-separated by c, so

Mo (S, Lt (volyy)) > 2N+/16, (35)

We now wish to obtain an upper bound on M, (S, L) using Lemma From the definition
of pseudo-dimension, we have dim,(CPF,(G)) < dim,(PF,(G)), since any P-shattering set for
CPF,(G) will certainly P-shatter PF,.(G). Since PF,.(G) C H", we have dim,(PF,(G)) <
dim, (") < n. Thus dim,(S) = dim,(CPF,.(G)) < n. S is L'-separated with distance at least
«, and moreover consists of elements that are bounded by 3 := sup;, ;. Lemma|C.2]now gives:

defvol(M)\"
)

M (S, L (volps)) < e(n +1) ( (36)

Intuitively, N, ~ 7%, so the lower bound (33) is exponential in 7. Meanwhile, « and 3 are both
polynomial in 7, so the upper bound (36) is polynomial in 7. So for sufficiently small r, we have a
contradiction with the supposition that 0 < C(r)/4. We now show this formally. Recall:

1=1/p (7/2 d—1
T N, Jo
B = sup , o= 0 inf [volM(B (pl))lfl/p}.
i€[N,] 4volyy (B, (p;)) /P NMP 16 [ s=1  ie[N] o
(37

Note that the supremum in § and the infimum in « is attained by the samfﬂz € [N,], namely, the p;
that has smallest vols(B,.(p;)). Combining and (36), where s(u) = sinh(u\/|K|),

2N /16 < e(n + 1) <4€BVZI(M))H

4evol(M) sup;e,[r/ (4volas (B ( 1/T’N1/p

:e(n+1 1—1/p (r/2
%iﬂﬂe[m [volas (Br(pi)t=1/7]

1 d—1 1 1/p 1\ "
=e(n+1) 166% sup volus (Br 7

Nrfor 1 45€[N,] VOIM(BT( 2)) P

vol(M) [ st "
=e(n+1) 166% sup [volas(Br(pi)) "] (38)

N, [y Lie[Ny]

where the equalities come from definition of 8 and « and rearranging, and the last equality from
noting the supremum is attained when ¢ = j € [N,] minimizes voly; (B, (p;)). The following result
lower-bounds the volume of small balls to control the supremum term.

*ntuitively, tall thin functions have the worst L' to L” ratio compared to short fat functions. By construc-
tion, small balls have tall thin functions.
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Proposition 3.3 (Croke| 1980, Prop. 14). Forr < inj(M)/2, the volume of the ball B,.(p) satisfies
2d_1VOle’1 (Bl)d

dmvol (B )41

VOl]w(BT(p)) Z CQ(d)?“d, Cg(d) = (39)

The volume of the d-dimensional hyperbolic sphere with sectional curvature K can be written in
terms of the volume of the d-dimensional spher

d—1
P [ sinh(y/|K|t)
lyra (B,) = vol,,q(B - dt. 40
volygg (By) = volygg( 1yl;0< N ) (40)

Note that z < sinh(z) < 2z for « € [0, 2]. Therefore, for p < 2/4/|K]|, we have sinh(\/|K|t) <
2./|K|t. We thus have that

d—1
P inh(+/| K|t
ol (By) = volye(B1) [ <<|>> a

=0 VIK] (41)
< Vol (B2 fd = Cald)p™, Cald) = volygg (By)21="/d.
Moreover,
T d—1 T o h K d_ld
TO/; _ fro/zsm (VIKu)* ! du <20 forr < 1/VE. @)
J% s 27 sinb(y/ TR w1 du
We continue the inequality forr < 1/4/|K]:
1(M) [T sd-1 "
2N /16 <e(n+1) 166% sup [‘v’()li\q(B,.(p,,;))fl] (43)
Nrfo7 sd=1 ig[N,)]

P " .
<e(n+1) (16evolM%(Bgr)f/2$(H02 Ly d) using (T4), Prop. B3]
0
(44)
T gd—1 "
<e(n+1) 16603(2r)dro/27dl02_1r_d using (1)) (45)
gd—
0
" gd—1 "
<e(n+1)[2¢TeC; 20—t (46)
0’"/2 gd—1
<e(n+1) (220305 M)" = e(n + 1)Cy(d)", using (@2) 47
where
volya(B1) ¢
d
Cy = Cu(d) == 24 eCyCy ' = 220t | M2 (48)
VOle_l (Bl)
We get a contradiction if
N, > 16 [nlog, Cy +log, (e(n +1))]. (49)
Recalling the lower bound (T4) on N, and using (#2)),
(M (M
N> vol(M) vol(M) (50)

volyra (Bar) ~ Ca(2r)?

Take the following choice of 7:

~1/d .
r = min {1 <16 Cs [nlog, Cy + logy(e(n + 1))]) ; L an(M), 4} . (3D

2 \ 7" vol(M) JIE 2

3The volume of the d-dimensional sphere is 27%/2 /T'(d/2), where T is Euler’s gamma function.
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Using , this choice of r satisfies the contradiction condition . Note 7 ~ (n + logn)~1/4.
The constants C3, Cy depend only on d.

Step 4. Concluding contradiction. This choice of r contradicts the assumption that 6 < Cy(r)/4.
Therefore, we must have that > C /4. Since the choice of r is independent of the choice of € > 0
taken at the start of Step 3a, we have that

dist(F.(G), H", L*(volar)) > C1(r) /4, (52)
where 7 is chosen as in (51). We obtain the chain of inequalities
dist(WHP(1), H", L9) > dist(WLP(1), 1", L} )vol (M) 971
> dist(F,(G), H", L )vol(M)Y/ a1
> Cy(r)vol(M)Y 171 /4
T,er—l/p fOT/Q gd—1

— : \1-1/p 1/¢g—1
St it [l (B ) vl D), (53)

where the first inequality comes from Holder’s inequality [ju|; < ||lu||,;vol(M)'~'/4, the second
inequality from F,.(G) C W1P(1), the third from (52) and the equality from definition of
C4(r). We conclude with recalling the bounds (42)), (50), and Proposition[3.3] We have

r [ vol(M) 1=1/p 1-1/p
dist(W'P(1), 1", L) > (d> 274 [Cyr?] P vol(M) Ve
32 \ C3(2r) E ,
o) Prop. 33|
= C5(d, vol(M), p, q)r.
The constant is oy
_g_sVol(M)*/a=/P C1vi—
Cy =271 (2;—%(0203 Lyi=1/p, (54)

Moreover, the constant C'5 and choice of r are independent of ™. Taking infimum over all choice
of H™ with dimp(H") < n and using (51), we have

pn(WHP(1), L) > Cs(d, vol(M),p, q)r 2 (n +logn)~ /. (55)
]

4 CONCLUSION

This work provides a theoretical motivation to further explore the manifold hypothesis. We show
that the problem of approximating a bounded class of Sobolev functions depends only on the in-
trinsic properties of the space it is supported in. More precisely, the approximation error of the
bounded WP space with respect to bounded pseudo-dimension classes is shown to be at least
(n+logn)~1/¢, where d is the intrinsic dimension of the underlying manifold. Since generalization
error is linear in pseudo-dimension, this provides an ambient-dimension-free lower-bound on gen-
eralization error. This is in contrast to many works in the literature that provide constructive upper
bounds on generalization error based on ReLU approximation properties that still depend on the
embedding of the manifold in ambient Euclidean space. Followup work could consider alternative
statistical complexities, such as Rademacher or Gaussian complexity.

The proposed bound can be improved in multiple ways. Firstly, the analysis is restricted to one
weak derivative. The analogous result of approximating W*? in the cube [0, 1] has lower bounds
~ n~k/P (Maiorov & Ratsaby, |1999). Extending our analysis to more weak derivatives would
require a careful construction in Step 1 of test functions with the appropriate regularity conditions. In
particular, we would require cutoff functions supp ¢; C B,.(p;) with explicitly bounded higher weak
derivatives ||V ¢;|| < 7¢I, which do not seem to appear in the literature. The explicit construction
of Moulis| (1971) of a C*> function that approximates a C2*~! function in the C*-topology could be
useful in this. Moreover, the current bound requires knowledge of the injectivity radius to uniformly
lower-bound the volume of small balls. Other ways of constructing volume lower-bounds would
help in improving the constants in the bound.
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A SAMPLE COMPLEXITY

For completeness, we briefly formalize the sample complexity bound Proposition 23] based on
(Anthony & Bartlett,|1999).

Definition A.1 (Anthony & Bartlett|{1999| Def. 16.4). For a set of functions F, an approximate
sample error minimizing (approximate-SEM) algorithm A(z, €) takes any finite number of samples
z = (x5, y:)y in US_1(X x R)™ and an error bound € > 0, and outputs an element f € F
satisfying

m

RIA(F,2) < Jof RU)+ 6 Rnlf) = - D (fa) i) (56)

m <
=1

Definition A.2 (Anthony & Bartlett|1999, Def. 16.1). For a set of functions F mapping from domain
X 10 [0,1], a learning algorithm L for F' is a function taking any finite number of samples,

L:U(XXR)"’%F (57)
m=1
with the following property. For any €, € (0, 1), there is an integer (sample complexity) mq (e, )
such that if m > mq(e, d), the following holds for any probability distribution P on X x [0, 1].

If z is a training sample of length m according to the product distribution P™ (i.i.d. samples), then
with probability at least 1 — 0, the function L(z) output by L is such that

E(e,p)~p[L(2)(z) — y]* < inf B ynplf(@) - y* +e. (58)

In other words, given m > my training samples, the squared-risk of the learning algorithm’s output
is e-optimal with probability at least 1 — 6.

Observe that the approximate-SEM algorithm works on the empirical risk, while the learning algo-
rithm works on the risk. Relating the two thus gives generalization bounds. The formal version of
Proposition[2.3] based on (Anthony & Bartlett, 1999) is now given as follows.

Proposition A.3 (Anthony & Bartlett| 1999, Thm. 19.2). Let H be a class of functions mapping from
a domain X into [0,1] C R, and that H has finite pseudo-dimension. Let A be any approximate-

SEM algorithm, and define for samples z, L(z) = A(z,16/+/length(z)). Then L is a learning
algorithm for H, and its sample complexity is bounded as follows:

mr(e,0) < % (2dimp(7-l)log <3€4> + log (?)) . (59)

A.1 RELATION TO OUR BOUNDS

In computing a risk minimizer over the Sobolev ball, we need to make two practical simplifications:
namely parameterizing the Sobolev ball (into a function class of finite pseudo-dimension), and in
simplifying the risk from (typically) an expectation into an empirical version. Our bound targets
the former approximation, while the aforementioned sample complexity bounds targets the latter
generalization problem. To formalize this, we have the relationship between the three quantities:

argmin R(f) «— argmin R(f) +— argmin R, (f),
FEWLp(1) fEM FEM

13
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where H,, is some function class with pseudo-dimension at most n. For the sake of exposition, we
make some additional assumptions and work in the worst-case.

Suppose that the (expected) risk R : W1P(1) — R is Lipschitz continuous in the space of functions,
suchas R = E, [ f(z) — y||?] for some sufficiently regular probability measure ;1 € P(M x R) and
measurement space ). Consider the set of minimizers G := arg min FeWLp(1) R(f), and assume

that arg min 101y R(f) = argminge o R(f), i-e., risk minimizers in L7 are also in whe,

Take H,, C L7 to be an optimal approximating class of pseudo-dimension at most n. In the worst
case, we have that the L? distance between #,, and minimizers g € G is bounded from below by
some € = ¢(n) > 0 as given by Theorem Assuming further some strong convexity conditions,
this gives that the minimizer f* € argmin;;, R(f) has risk at least ce for some strong-convexity
constant ¢. Adding this worst-case risk with the worst-case risk of the (e, §)-sample complexity
bounds, we have that an empirical risk minimizer may have even greater risk.

We make these assumptions for the sake of exposition in the worst-case; note however that Theo-
rem|[3.1]considers the furthest element in 1! (1) from 7,,, and that minimizers in ,, and W*'?(1)
may be closer together.

B RIEMANNIAN GEOMETRY

Definition B.1. A d-dimensional Riemannian manifold is a real smooth manifold M equipped with
a Riemannian metric g, which defines an inner product on the tangent plane T,,M at each point
p € M. We assume g is smooth, i.e. for any smooth chart (U, z) on M, the components g =
g(22-,-2): U = RareC™®.

ali ? Bacj

A manifold is without boundary if every point has a neighborhood homeomorphic to an open subset
of R%. For a point p € M, let B,(p) be the metric ball around p in M with radius r > 0.

The sectional (or Riemannian) curvature takes at each point p € M, a tangent plane P C T, M and
outputs a scalar value. The Ricci curvature (function) Ric(v) = Ric(v, v) of a unit vector v € T,M
is the mean sectional curvature over planes containing v in T}, M. In particular, for a manifold with
constant sectional curvature K, we have Ric = (d — 1) K. We write Ric > K for K € R to mean
that Ric(v) > K holds for all unit vectors in the tangent bundle v € T M.

The injectivity radius inj(p) at a point p € M is the supremum over radii v > 0 such that the
exponential map defines a global diffeomorphism (nonsingular derivative) from B,.(0; T,,M) onto
its image in M. The injectivity radius inj(M) of a manifold is the infimum of such injectivity radii
over all points in M.

A Riemannian manifold has a (unique) natural volume form, denoted voly;. In local coordinates,
the volume form is

volyr = /gl dxy A ... Aday, (60)

where g is the Riemannian metric, and dx1, ...,dxq is a (positively-oriented) cotangent basis. We
drop the subscripts when taking the volume of the whole manifold vol(M) = voly (M).

Intuitively, the sectional curvature controls the behavior of geodesics that are close, and the Ricci
curvature controls volumes of small balls. For manifolds of positive sectional curvature such as on
a sphere, geodesics tend to converge, and small balls have less volume than Euclidean balls. In
manifolds with negative sectional curvature such as hyperbolic space, geodesics tend to diverge, and
small balls have more volume than Euclidean balls.

Within the ball of injectivity, geodesics are length-minimizing curves. The injectivity radius defines
the largest ball on which the geodesic normal coordinates may be used, where it locally behaves as
R?. This is an intrinsic quantity of the manifold, which does not depend on the embedding.

The volume form can be thought of as a higher-dimensional surface area, where the scaling term
\/m arises from curvature and choice of coordinates. For example, for the 2-sphere S? embedded
in R?, the volume form is simply the surface measure, which can be expressed in terms of polar
coordinates.
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From the compactness assumption, we have that the sectional (and hence Ricci) curvature is uni-
formly bounded from above and below (Bishop & Crittenden, 2011, Sec. 9.3), and the injectivity
radius inj(M) is positive (Cheeger et al., 1982; Grant, 2012).

Proposition B.2. Let (M, g) be a compact Riemannian manifold without boundary. The following
statements hold.

1. (Bounded curvature) The sectional curvature (and hence the Ricci curvature) is uniformly
bounded from above and below (Bishop & Crittenden, 2011} Sec. 9.3).

2. (Positive injectivity radius) Let the sectional curvature K,, be bounded by some |K ;| <
K. Suppose there exists a point p € M and constant vy > 0 such that voly;(B1(p)) > vo.
Then there exists a positive constant iy = i1(K, v, d) such that (Cheeger et al.| |1982;
Grant, | 2012):

inj(p) > i1 >0
In particular, since M is compact, using a finite covering argument, inj(M) is bounded
below by some positive constant.

C PACKING LEMMAS

Proposition C.1 (Packing number estimates). Suppose (M, g) has curvature lower-bounded by
K € R, diameter D and dimension d. Let M}i( be the d-dimensional model space of constant
sectional curvature K (i.e. sphere, Euclidean space, or hyperbolic space). The packing number
N.(M) satisfies, where p is any point in M

vol(M)

VOIM} (BD)
VOlM;i{ (BQS)

< N. <
: VOle< (Be)

(61)

Proof. Let {p1, ..., pn.} be an e-packing of M.

Lower bound. By maximality, balls of radius 2¢ at the p; cover M, so we have by summing over
volumes and using Bishop—Gromov:
Ns
vol(M) <>~ volas(Bac(pi)) < Nevolyra (Bae)- (62)

=1

Upper bound. Apply Theorem with e < D. We have vola(B:(p)) < volya (B:(px)) and
volp (Bp(pi)) = vol(M) for all 7. Since the e-balls are disjoint, we have by finite additivity and
Bishop—Gromov:

VOlM?( (BE)

Ne
voly (M) > > volys (Be(pi)) > Nevol (M) (63)
=1

volpsa (Bp)
O

We additionally consider a bound on the metric entropy for bounded functions.

Lemma C.2 (Hausslen|1995) Cor. 2 and 3). For any set X, any probability distribution P on X,
any distribution QQ on R, any set F of P-measurable real-valued functions on X with dimp(F) =
n < oo and any € > 0, the e-metric entropy M. (largest cardinality of a e-separated subset, where
distance between any two elements is > ¢) satisfies:

M (F,opq) <e(n+1) <2:)n (64)

Specifically, taking L* distance, if F is P-measurable taking values in the interval [0, 1], we have
M(F,L'(P)) <e(n+1) (2:) . (65)

If o is instead a finite measure, and F is o-measurable taking values in the interval [—j3, 3], then
M (F.L} o)) < e(n+ 1) (W)n (66)
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Remark C.3. The final inequality comes from the second-to-last inequality, by noting that a -
separated set in o corresponds to a £/o(X )-separated set in the normalized measure o /o(X), as
well as scaling everything by 20.

D SEPARATION CLAIM

Here we show Claim. Recall that G C {£1}"" is defined to be well-separated by Lemma
Claim. Forany f # ' € F.(G), we have

rer—l/p r/2 Sdfl )
S g pson ] @
0 T

If= £l >

Proof. Suppose f # f' € F.(G). In particular, they are generated by multi-indices a # o' € G.
Consider the set of indices Z C [N, ] such that a; # a}. By construction in Lemma[3.2} |Z| > N, /4.

Then the difference between f and f’ on B,.(p;) is 2¢; /er/ P if i € Z, and O otherwise. By
disjointness of the B,.(p;), we have

2 r volas (B, /2(pi))
— 'y = E — il > E 68
||f f ”1 pym N}/P”(ﬁ Hl - 2Nﬁ/p e VOIM(Br(pi))l/P ( )

Z r OT/2 s 1volyy, (Br(pi))

>
S5 2NMP [T sd1volyr (B, (pi)) /P

where s(u) = sinh(u+/|K]) (69)

Tlel/P fr/Q Sd—l
> r 0 3 (p.N1—1/p
> T it [volu (B o)) ] (70)
,],.Nl—l/P j""/Q Sd_l
. 0 inf |volu (B, (p;))' /7 71
2R el [VOM( (pi)) } (71)

by the L*-bound on ¢;, Bishop—Gromov (Corollary , and using |I| > N,./4 for the inequalities
respectively. O
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